Section 1 Sound Waves

Preview

- Objectives
- The Production of Sound Waves
- Frequency of Sound Waves
- The Doppler Effect

Section 1 Sound Waves

Objectives -

- Explain how sound waves are produced.
- Relate frequency to pitch.
- Compare the speed of sound in various media.
- Relate plane waves to spherical waves.
- Recognize the Doppler effect, and determine the direction of a frequency shift when there is relative motion between a source and an observer.

What is Sound?

- Sound is a longitudinal wave.
- All sound waves are produced by vibrating objects.
 - Tuning forks, guitar strings, vocal cords, speakers
- The vibrating object pushes the air molecules together, forming a *compression*. •
- It then spreads them apart, forming a *rarefaction*.

Graphing Sound Waves -

The diagram shows compressions (dark) and rarefactions(white). If you measured the pressure or density of the air and plotted these against position, how would the graph appear?

Section 1 Sound Waves

The Production of Sound Waves -

- Every sound wave begins with a vibrating object, such as the vibrating prong of a tuning fork.
- A compression is the region of a longitudinal wave in which the density and pressure are at a maximum.
- A rarefaction is the region of a longitudinal wave in which the density and pressure are at a minimum.

Section 1 Sound Waves

The Production of Sound Waves, continued -

- Sound waves are longitudinal.
- The simplest longitudinal wave produced by a vibrating object can be represented by a sine curve.
- In the diagram, the crests of the sine curve correspond to compressions, and the troughs correspond to rarefactions.

Characteristics of Sound

- Frequency is the number of waves per second.
- You have heard of ultrasound. What is it?
- Frequencies audible to humans are between
 20 Hz and 20 000 Hz.
 - Middle C on a piano is 262 Hz.
 - The emergency broadcast signal is 1 000 Hz.
- Infrasound frequencies are lower than 20 Hz.
- Ultrasound frequencies are greater than 20 000 Hz.

Section 1 Sound Waves

Frequency of Sound Waves -

- As discussed earlier, frequency is defined as the number of cycles per unit of time.
- Sound waves that the average human ear can hear, called audible sound waves, have frequencies between 20 and 20 000 Hz.
- Sound waves with frequencies less than 20 Hz are called infrasonic waves.
- Sound waves with frequencies above 20 000 Hz are called ultrasonic waves.

Section 1 Sound Waves

Frequency and Pitch -

- The frequency of an audible sound wave determines how high or low we perceive the sound to be, which is known as pitch.
- As the frequency of a sound wave increases, the pitch rises.
- The frequency of a wave is an objective quantity that can be measured, while pitch refers to how different frequencies are perceived by the human ear.

Pitch.

- Pitch is the human perception of how high or low a sound appears to be.
 - Pitch is primarily determined by frequency.
 - Pitch also depends slightly on other factors.
 - Higher frequencies appear to have a higher pitch when played loudly, even though the frequency does not change.

Speed of Sound .

- Sound waves travel though solids, liquids and gases.
 - In which would the speed generally be greatest?Why?
 - Solids. Because the molecules are more closely packed, the particles respond more rapidly to compressions. —
 - How might the temperature of air affect the speed of sound waves? Why?
 - Higher temperature increases the speed of the waves because the particles are moving faster and colliding more often.

Section 1 Sound Waves

The Speed of Sound -

- The speed of sound depends on the medium.
 - Because waves consist of particle vibrations, the speed of a wave depends on how quickly one particle can transfer its motion to another particle.
 - For example, sound waves generally travel faster through solids than through gases because the molecules of a solid are closer together than those of a gas are.
- The speed of sound also depends on the temperature of the medium. This is most noticeable with gases.

Section 1 Sound Waves

The Speed of Sound in Various Media

Medium	ν (m/s)
Gases	
air (0°C)	331
air (25°C)	346
air (100°C)	366
helium (0°C)	972
hydrogen (0°C)	1290
oxygen (0°C)	317
Liquids at 25°C	
methyl alcohol	1140
sea water	1530
water	1490
Solids	
aluminum	5100
copper	3560
iron	5130
lead	1320
vulcanized rubber	54

Spherical Waves .

- Sound propagates in three dimensions.
- The diagram shows:
 - Crests or wave fronts (blue circles)
 - Wavelength (λ)
 - Rays (red arrows)
- Rays indicate the direction of propagation.
- How would these wave fronts appear different if they were much farther from the source?

Section 1 Sound Waves

The Propagation of Sound Waves

- Sound waves propagate in three dimensions.
- Spherical waves can be represented graphically in two dimensions, as shown in the diagram.
- The circles represent the centers of compressions, called wave fronts.

- The radial lines perpendicular to the wave fronts are called rays.
- The sine curve used in our previous representation corresponds to a single ray.

Spherical Waves .

- Wave fronts and rays become more nearly parallel at great distances.
- Plane waves are simply very small segments of a spherical wave a long distance from the source.

Section 1 Sound Waves

The Propagation of Sound Waves, continued -

- At distances from the source that are great relative to the wavelength, we can approximate spherical wave fronts with parallel planes.
- Such waves are called plane waves.
- Plane waves can be treated as one-dimensional waves all traveling in the same direction.

Section 1 Sound Waves

The Doppler Effect -

- The **Doppler effect** is an observed change in frequency when there is **relative motion** between the source of waves and an observer.
- Because frequency determines pitch, the Doppler effect affects the pitch heard by each listener.
- Although the Doppler effect is most commonly experienced with sound waves, it is a phenomenon common to all waves, including electromagnetic waves, such as visible light.

Doppler Effect -

- Why are the waves closer together on the left?
 - Waves are closer because the vehicle moves to the left along with the previous wave.
- How will the sound be different for observer A and observer B?
 - Higher frequency (pitch) for observer A •
- Continued on the next slide....

Doppler Effect -

- How would the wave pattern change if the vehicle moved at a faster speed? How would it sound different?
 - At a higher speed, waves would be even closer together and the pitch difference would be even greater.

• The *Doppler effect* is the observed change in frequency due to the motion of the source or observer.

Section 2 Sound Intensity and Resonance

Preview

- Objectives
- Sound Intensity
- Forced Vibrations and Resonance
- The Human Ear

Section 2 Sound Intensity and Resonance

Objectives -

- Calculate the intensity of sound waves.
- Relate intensity, decibel level, and perceived loudness.
- Explain why resonance occurs.

Sound Intensity.

- Vibrating objects do work on the air as they push against the molecules.
- Intensity is the rate of energy flow through an area.
 - What is "rate of energy flow" called?
 - $\Delta E/t$ is called power (*P*). \checkmark
 - Since the waves spread out spherically, you must calculate the area of a sphere. How?
 - $A = 4\pi r^2$ •
 - So, what is the equation for intensity?

Section 2 Sound Intensity and Resonance

Sound Intensity -

- As sound waves travel, energy is transferred from one molecule to the next. The rate at which this energy is transferred through a unit area of the plane wave is called the intensity of the wave.
- Because power (P) is defined as the rate of energy transfer, intensity can also be described in terms of power.

intensity =
$$\frac{\Delta E / \Delta t}{\text{area}} = \frac{P}{4\pi r^2}$$

intensity =
$$\frac{\text{power}}{(4\pi)(\text{distance from the source})^2}$$

Sound Intensity.

INTENSITY OF A SPHERICAL WAVE

intensity =
$$\frac{P}{4\pi r^2}$$

intensity =
$$\frac{\text{(power)}}{(4\pi)(\text{distance from the source)}^2}$$

- SI unit: W/m² •
- This is an inverse square relationship.
 - Doubling r reduces intensity by $\frac{1}{4}$.
 - What happens if r is halved? ▼
 - Intensity increases by a factor of 4.

Section 2 Sound Intensity and Resonance

- Intensity has units of watt per square meter (W/m²).
- The intensity equation shows that the intensity decreases as the distance (r) increases.
- This occurs because the same amount of energy is spread over a larger area.

Section 2 Sound Intensity and Resonance

- The intensity of a wave approximately determines its perceived loudness.
- However, loudness is not directly proportional to intensity. The reason is that the sensation of loudness is approximately logarithmic in the human ear.
- Relative intensity is the ratio of the intensity of a given sound wave to the intensity at the threshold of hearing.

Section 2 Sound Intensity and Resonance

- Because of the logarithmic dependence of perceived loudness on intensity, using a number equal to 10 times the logarithm of the relative intensity provides a good indicator for human perceptions of loudness.
- This is referred to as the decibel level.
- A dimensionless unit called the decibel (dB) is used for values on this scale.

Intensity and Decibels.

- An intensity scale based on human perception of loudness is often used.
- The base unit of this scale is the bel. More commonly, the decibel (dB) is used.
 - 0.1 bel = 1 dB,1 bel = 10 dB, 5 bels = 50 dB, etc. ▼
 - The lowest intensity humans hear is assigned a value of zero.
- The scale is logarithmic, so each increase of 1 bel is 10 times louder.
 - An increase in intensity of 3 bels is 1 000 times louder.

Audible Sounds -

- The softest sound humans can hear is called the threshold of hearing.
 - Intensity = 1×10^{-12} W/m² or zero dB -
- The loudest sound humans can tolerate is called the threshold of pain.
 - Intensity = $1.0 \text{ W/m}^2 \text{ or } 120 \text{ dB}$
- Human hearing depends on both the frequency and the intensity.

Section 2 Sound Intensity and Resonance

- Human hearing depends on both the frequency and the intensity of sound waves.
- Sounds in the middle of the spectrum of frequencies can be heard more easily (at lower intensities) than those at lower and higher frequencies.

Section 2 Sound Intensity and Resonance

Conversion of Intensity to Decibel Level

Intensity (W/m ²)	Decibel level (dB)	Examples
1.0×10^{-12}	0	threshold of hearing
1.0×10^{-11}	10	rustling leaves
1.0×10^{-10}	20	quiet whisper
1.0 × 10 ⁻⁹	30	whisper
1.0×10^{-8}	40	mosquito buzzing
1.0×10^{-7}	50	normal conversation
1.0×10^{-6}	60	air conditioning at 6 m
1.0×10^{-5}	70	vacuum cleaner
1.0×10^{-4}	80	busy traffic, alarm clock
1.0×10^{-3}	90	lawn mower
1.0×10^{-2}	100	subway, power motor
1.0×10^{-1}	110	auto horn at 1 m
1.0×10^{0}	120	threshold of pain
1.0×10^{1}	130	thunderclap, machine gun
1.0×10^{3}	150	nearby jet airplane

Classroom Practice Problems -

- The intensity of the sound from an explosion is 0.10 W/m² at a distance of 1.0 × 10³ m. Find the intensity of the sound at a distance of 5.0 × 10² m, 1.0 × 10² m and 10.0 m.
 - Answers: 0.41 W/m^2 , $1.0 \times 10^1 \text{ W/m}^2$, $1.0 \times 10^3 \text{ W/m}^2$
- Find the approximate decibel equivalents of these sound intensities using Table 2.
 - Answers: 110 dB, 130 dB, 150 dB

Forced Vibrations -

- Sympathetic vibrations occur when a vibrating object forces another to vibrate as well.
 - A piano string vibrates the sound board.
 - A guitar string vibrates the bridge.
- This makes the sound louder and the vibrations die out faster.
 - Energy is transferred from the string to the sound board or bridge.

Resonance -

- The red rubber band links the 4 pendulums.
- If a blue pendulum is set in motion, only the other blue pendulum will have largeamplitude vibrations.
 - The others will just move a small amount.
- Since the vibrating frequencies of the blue pendulums match, they are resonant.

Section 2 Sound Intensity and Resonance

Forced Vibrations and Resonance

- If one of the pendulums is set in motion, its vibrations are transferred by the rubber band to the other pendulums, which will also begin vibrating. This is called a forced vibration.
- Each pendulum has a natural frequency based on its length.

Section 2 Sound Intensity and Resonance

Forced Vibrations and Resonance, continued -

- Resonance is a phenomenon that occurs when the frequency of a force applied to a system matches the natural frequency of vibration of the system, resulting in a large amplitude of vibration.
- If one blue pendulum is set in motion, only the other blue pendulum, whose length is the same, will eventually resonate.

Resonance -

- Large amplitude vibrations produced when the frequency of the applied force matches the natural frequency of receiver
 - One blue pendulum was the driving force and the other was the receiver.
- Bridges have collapsed as a result of structural resonance.
 - Tacoma Narrows in the wind
 - A freeway overpass during an earthquake

Section 2 Sound Intensity and Resonance

The Human Ear -

- The human ear is divided into three sections—outer, middle, and inner.
- Sound waves travel through the three regions of the ear and are then transmitted to the brain as impulses through nerve endings on the basilar membrane.

